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ABSTRACT

In this note, the motion of the fluid in a
partially filled enclosure is analyzed subject to the
restrictions that viscous effects are negligible, that
the total mass of fluid present and the local fluid
density are both constants, and that the motion of the
enclosure consists of small perturbations from a
predetermined mean motion. The analysis 18 carried
out using a frame fixed to the enclosure, thus making
it relatively easy to treat cases involving complicated
tank geometries. As an example, the behavior of
fluid in a rigid, circularly cylindrical tank is investi-
gated. The results are expressed as transfer functions

applicable to missile dynamics.
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Unperturbed acceleration of the origin of the
body-fixed frame with respect to an inertially-

fixed frame
Radius of a cylindrical tank

Thrust acceleration = lhrust— Drag
missile mass

Constants of integration

Force
Equation of the tank surface
Gravity vector

Distance from the origin of the body-fixed

axis to the unperturbed position of the free surface

Bessel function of the first kind of erder n

Separation parameters
Moment

Total mass of fluid in the tank
Ambient pressure in the fluid

Apparent velocity of a fluid particle as seen

in the body-fixed frame
Magnitude of q

Position vector in the body-fixed frame
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Laplace transform variable
Time

Velocity vector of a fluid particle as seen in

the inertially-fixed frame

Unit vectors defining the body-fixed frame

Unperturbed velocity of origin of body-fixed

frame with inertially-fixed frame
Perturbation in V

Differential element of volume
Coordinates of body-fixed frame
Perturbation in A

Velocity potential
Fluid mass density
Perturbation in the location of the free surface

Angular velocity of body-fixed frame with respect to

inertially-fixed frame
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1. Introduction and Assumptions

A. Introduction

The dynamics of liquid fuel missiles are affected signifi-
‘cantly by the motion of the fuel in the tanks. This motion has been
called ''fuel sloshing''. The effects have been studied by various
scientists, and the major works in the field are included in the
references at the end of this report. The fuel sloshing problem is
a complex one and will continue to be an area of study for some
time. This report is an additional effort at describing the forces

and moments acting on a missile due to fuel sloshing.

The general problem is solved for arbitrary tank geometry
subject to the assumptions dealt with below. Kinematical relation-
ships between velocities in the fixed and moving frames are displayed.
From Newton's second law and the assumption of zero vorticity, a
pressure relationship (3-29) is obtained. The boundary conditions at
the tank wall and at the free surface yield two relations, (3-28) and
(3-33) which, with Laplace's equation, determine the flow pattern.
The flow pattern and the pressure relation may then be integrated to
find the forces and moments for a particular tank geometry and veloc-

ity potential.

In the example, boundary conditions for a rigid circular-
cylindrical tank are incorporated into eq(3-28), (3-26), and (3~33).
Laplace transforms of these equations are taken, and then a general
solution is obtained in terms of Bessel functions and hyperbolic
functions of eigenvalues. The constants are evaluated by means of

the boundary conditions and orthogonality properties of eigenfunctions.

The Laplace transform (5-39) of the pressure relationship
(3-29) is taken, and when the velocity potential, (5-38), is introduced,

the expressions for forces and moments may be integrated. These



resulis are written as four transfer functions:

F F_ =M M
—Z & X .4 —X
v, T, U T

z y z y

B. Assumptions

The assumptions made and their significance are listed

below:

(l) - The fluid is assumed to be incompressible. In
most practical cases, the preséure gradient due to accel -
eration is not‘great enough to effect appreciable changes
in the fluid d_ensify. This assumption -removes- the thermo-
dynamic p_rbblerns associated with the more general case,
i.e., the energy equation (Bernoulli's_ equation) is found

by integrating the momentum equation.

- . {(2) The total mass of fluid in the tank is assumed
to be constant. Except for local effects in the neighbor-
hood of the "sink" or drain, the mass flow rates usually
encountered in rocketry are small enough to preclude

the appearance of serious errors arising from this source.

(3) The tank static pressure is great enough to
~ prevent cavitation. Because this is a design criterion,

this assumption seldom presents any difficulties.

‘ (4) "Surface tension forces are negligible. Here
again, the errors introduced are local in scope. Often
the ratio of inertia, or D'Alémbert, forces to surface
tension forces in the region of the free surface will be

high, thus justifying this assumption.

(5) Viséous effects are neglected. When this assump-
tion is warfanted, it can be shown that an enormous
mathematical simplification results, since the well developed
tools of potential theory may be brought io bear on the

problem. The necessary and sufficient condition for the
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existence 6f a velocity potential is that the vorticity, i.e.,
the curl of the‘veldcity, vanish everywhere in the fluid.

In the case of an unbaffled t.ank oscillating with small
amplitude, this condition is very nearly met because the
vorticity contributions from skin friction on the tank walls

and from splashing on the free surface are both small,

The purpose of baffles, it shouldbe noted, is two-fold:
first, some damping is added to the system; second, the
natural frequencies of the various modes are altered. The
damping effect arises when some of the kinetic energy of
ordered motion is converted to kinetic energy of random

eddying, whence it is dissipated by viscous effects. Changes

in natural frequencies are due to altered tank geometry. In

other words, a completely imperforate baffle would give
rise to a totally different problem, which is, in many ways,
easier to analyze. A good discussion of baffles may be

found in reference (1),

(6) The tank motion is restricted to small disturb-
ances from a zero lift trajectory. In addition to the rea-
sons discussed above, this permits linearization of the
boundary condition at the free surface. Also, variations
in thrust acceleration are not permitted because the
various natural frequencies are proportional to this
quantity, and hence such a variation would give rise to
non-linear effects. In the large majority of practical
cases, the variation in thrust acceleration is small in

the time interval of interest.

Kinematics

This report uses two frames, one fixed with respect to inertial

space, the other fixed to the axis of symmetry of the tank. Although
other schemes are feasible for uncomplicated tank geometries, this

method is generally the simplest to apply in practice.

11



The kinematical relationships used are those derived in ref(2),

or any similar text. They may be written as follows:

T=V+7V +qg+ © X R, and (2-1)
T . F+3+ rmxg+ L(5x /] ]
3t A+a+dt+w><q+dt[w>< R} (2-2)

Here the cross product is defined in the usual way. It should be

remarked that in fluid mechanics the derivatives’ ﬂ and 99 are

, dt dt
usually written as
d0 _ DU _ a0 o 1T
T -5 - &t [(Ce7 1T, and {2-3)
d@ _ Dg _ a9
H- T mt (TeV]7 (2-4)

because the differentiation is performed while following a specific
fluid particle. The expressions for such ''substantial" derivatives

may be found from the chain rule for partial derivatives.

As a part of the kinematical description of the problem an
equation for the conservation of mass must be written. This equa-
tion, often called the "equation of continuity', is of the same form

in both frames:

A\VAYS 5 0, or (2-5)

It

Veg=0. (2-6)

This result is valid only for an incompressible fluid, i.e.,

p = constant. (2-7)

*The terms, A+ @, are the acceleration of the origin of the moving
frame as measured in inertial space and then resolved into the appro-
priate components in the moving frame. These components wouldbe

%1% t g—f + x{V+m if all quantities were measured in the

moving frame.
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3. Dynamics

A. The Pressure Relationship

Newton's Second Law, when written for the body-fixed

frame takes the form,

F = (paVol) 32 = (pdVol)g - ¥ p(dVol), or (3-1)
dU _ —_ 1 .-.Dgq, =~ -, d = =
T E- G VP A+a+]—3t9 twxq+— [wXR] . (3-2)

Here only the principal diagonal terms in the stress tensor are

used; the off-diagonal term55WMCh are due to viscosity, are im-
portant only in the boundary layer and such places. When these
viscous terms are neglected, Kelvin's theorem states that the cir-
culation around a closed contour consisting of a group of particles
remains constant. If we presume zero initial circulation for all

such paths, then it follows that the vorticity must always vanish,or
VxU=0. (3-3)

This in turn implies that U-V is the gradient of a scalar

potential, ¢.
U-V=v+q+uXR 4. (3-4)

The author realizes that the above discussionis but a brief
outline of some of the most important material in the field of hydro-
dynamics. For those interested in a more detailed discussicn, the
first five chapters of Lamb, ref(9), is considered to be one of the

best dissertations on hydrodynamics available.

The next step is to manipulate equations (2-5), (2-6), (3-2),
(3-3), and (3-4) in such a manner as to enable us to integrate equa-

tion (3-2) with respect to the three spatial coordinates.

13



From (3-3) and (2-1) it follows that
VUXxU= IXV+IXVv+ TXq+VX [0 XR]=0. (3-5)

Noting that V and v are functions of time alone, ¥ XV and VY X v

vanish, leaving,

VXg =-¥ X [wXR] (3-6)
=-[ZeR]w + [w eV R
=-8wtuw
o’ VX3 =-20 (3-7)

That is, the vorticity as seen in the body-fixed frame is such that it

counterbalances the angular motion of the frame.

We next investigate the Coriolis acceleration term, ¥ X q.
20Xq = -[ VXq]Xq=gx[V xq]. (3-8)

Direct expansion of the x component (the other two are similar)

3q, 9q ] [aq dq ] — .
= e | g, ez i,
20 Xq> [qy l:ax 3y 4z 55 - .. (3-9)

shows that

8q
Adding and subtracting g, —B)TX inside the bracket results in
8q oq 9q 9q oq 99 —
wXa =X 4 —z| - X X ==
2w><q%{[1x ax  dy Bx 4z 9x Gx 3% T By T dz by s
| (3-10)
or that
- = 1 2 — - '
2w><q=V['§q] -[qOV_Jq. (3-11)
Noting that
V¢ =v +q+uxR, (3-4)

14



equation (3-11) becomes
9% Xg = 7 [-lng]— [Go9 )[VF-7-uxR],  or

20 Xq =V [%qz] - [Te VY ¢ -wxR]

Expansion of the term [Ge%] [w XR] as before

leads to
- - g . -
[Tev]lwXR]=> qu§;+qy%+qz—aaz-] bog2 “w,y1 1

= [quz -wzqy] lx .

The expansion of the y and 2 components is similar.

..o [E.V] IGXEFGXE

The Coriolis acceleration now becomes
- 1 2 _ - e
26xq=VIgal- [Gev]veét [Tev]wxR]
- 1 2 - - -
=591 [§ev]Vé+T XY, or

Gx3-93q1- [aev] V4 .

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

Similar manipulations enable us to express the angular

acceleration term, c?—t[EXE] , as

d — — -
SBxRI= £ 1Ve--3) , or

SoxR1= (9641 +5 x [Ve-3]- &, or

-C%:[Gxﬁp ﬁ%vtﬁ +[§-V]v¢-%+ax [Vé-Gl-T .

15
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We now substitute equations (3-16) and (3-19) into equation {3-9).
It follows that

g-+ Up-K+a+PIATXTr g Vet [@-0Ive  (3-20)

- %HE X[7¢-q)] -a , or

L Vp A-g+3% a TV ¢+ [QeT TS+ TX V¢, and  (3-21)

-LVp A- g-!~a v¢+V[2qJ+w><[V¢ q]. (3-22)

-

Assuming interchangeability of the order of partial differen-

tiation is valid, the momentum equation may be written as
-% 7p*= V[%q2]+ \v g—,? +A-g+u X[v toxR] . (3-23)

Since any body moving in a gravitational field has a term,
+§, contained in A, it is apparent that the difference, A -E, is the
total specific force, or in the case of a zero lift trajectory, the
thrust acceleration, a;. With this result, equation (3-23) may be

written in the form,

V{Sdp+—q +§¢+a RV(LOXR)-&JR+2 R)}

(3-24)

After integration with respect to the three spatial coordinates, it is
found that

p=-p{-%q2+%tQ _é *R-v W XR)- w 224+l (w R) +C(t)}

(3-25)

16



where C(t) is the function of integration. Since C(t) may be
incorporated into ¢ without altering the flow pattern or the forces
and moments exerted by the fluid on the tank walls, it is hereafter

omitted.

B. The Flow Pattern

The solution for the flow pattern is found by solving
Laplace's equation subject to certain boundary conditions. We obtain
Laplace's equation by substituting equation (3-4) into equation (2-5).
That is, ' '

v2s - 0. (3-26)

The boundary condition at the tank wall is that the fluid
velocity normal to the tank wall is zero. f (x,y,2,t} = 0 is the

equation of the tank wall, this condition may be written as

qevi= -%E , (o_r* . (3-27)
(Vé-7-ax®-vi=-Z  or
Vé-Vi=GxR -Vi+v.yi- & (3-28)

Similarly, the boundary condition at the free surface is
that the pressure is a constant. If only small perturbations from
the assumed moticon are considered, i.e., £ is small, then the

higher order terms in equation (3-25) may be neglected, yielding

L--ax -2 (3-29)
*The fluid velocity normal to the surface is a'% Since =0,
g—f = % Vi o+ —g% = 0. Hence the surface velocity normal
| ot
to itself is <. I-—g—ii-l . —-%E—fl

17



Differentiating equation{3-29)and retaining only the first order

terms results in

2
— d
"[]%(%) =‘at-a§-g—tz¢-[q .v]3§=0, or  (3-30)

2
a7 ¢ - 98 _ _
—a"i':-z-""'at—aT—O- (331)

In deriving equations {3-29}and (3-3) it has been assumed that the
x axis of the moving frame is aligned with the unperturbed flight

path. In this situation only the x component of Et does not vanish.
There also exists a kinematical relation, namely

08 _d¢ _ _ -
x -BT-B_% v, wyz+wzy. {(3-32)

Fad

q

Substituting equation (3 -39 into (3-3l) gives the final required resuilt,

2
"¢ ¢ _ i} i}
i a,ﬁg aglv tuz-wyl. (3-33)

Furthermore, this condition may be applied at the unperturbed free

surface position, x=-h. This may be shown by observing a Taylor's

expansion of the form,

2
%}% (-h+&,y,2,t)= g—g (~h,y,z, t)+& Z—xg (-h,y,z,t) (3-34)

3
+ ‘;— '5'2 g—g {-h,y, z,t)+ higher order terms,
X

and noting again that £ is a small quantity.

18



4 . Summary of the General Problem

To find the forces and moments excited by a moving

tank one first determines the flow pattern using equations:

v2¢= 0, (3-26)

Vé: Vicd XxR-Vi.vi-Z (3-28)
2%, @

22 +at§§= a v+ wyz-wzy] (3-33)

The local pressure may then be found from the equation

P _,4.99 _
5 atX 5t (3-29)

Properly weighted integration then yields the required

forces and moments.

19



5. An Example

A, The Flow Pattern

As an example, we now consider the case of a
perfectly rigid, cylindrical tank of circular cross-section which
is simultaneously undergoing pitching and variation in the angle
of attack. This is the same problem as that of ref (8) except that
pitching motion is now permitted. We note that, because of sym-

metry, the yawing, sideslipping tank presents a similar problem.

Unperturbed
free surface

| T—— Vf=-1r
- 7“‘\ | — Vi--1x

Fig. 1 Example

20



Noting that

v =y = _=w =0, (5-1)

we may formulate the required boundary conditions. On the tank

bottom, ie., at x=-h - ﬂp—lzz . equation (3-28) becomes

——g-g-myzwyr sin@ . (5-2)
On the tank wall, at r =a, we have
%g_- = fIy cos B +TZ sin B} [wyz-l-x *h&X—l.z'l' vaz] . (5-3)
After simplification, equation (5-3) is
3 | [-wyx+yz]sin8 ) (5-4)

dr

In cylindrical coordinates, Laplace's equation (equation [3-26 )

is
2 2 2
L9, L0, L 86, 0. (5-5)
ir r ar r 892 8x2

In order to use arbitrary inputs, it is convenient to take
the Laplace transform of the above equations. Assuming that all

initial conditions are zero, e.g, v, (t=0)= 0, it follows that

")
e |l

P, 1 28,1 %, 2% 5-6)
ar? T 3T 2 52 g2
E.Q:ﬁ rsin 6, x=-h- =, (5-7)
0x y wpaz

21



99 _ == i )
5T [ wyx+vz]sm9,r a, (5-8)
and from (3 -33
2F .a._z— = o i = - -
8% ta, = a, T sin 6, x = -h, (5-9)
where the double bar indicates the transformed quantity.

To solve equation (5-6) a product solution of the
form,
¢ = X(x) R(r) T(O) , (5-10)

is assumed. When equation (5-10) is substituted into equation (5-6),

the resulting equation is

1a%x __1d°R_ 1 ar_ L d’r_ 2 (5-11)
X dx2 R dr2 Rr dr 2T d92
It follows from this that X is given by
X = Cl sinh (kx) + C2 cosh (kx), k#0 (5-12)
X=Csx+ C4 s k=0 | (5-13)
Similarly,
2 .2 2
r—RdI;+~E%%+ k2r2=-%d—r2['=n2, (5-14)
dr doe
and therefore
'I‘=C5 cos (nB) + C6 sin{nod) , (5-19)
and
R = C"!Jn {(kr) + CSYn {kr), k #0 {5-16)
- n -n - -
R=Cgr + C v ", k=0. (5-17)

22



The. most general solution is a superposition of the k=0 and

k #0 solutions.
z = [Cscos (ne) + Cssin (nﬂ)] {[C BX + C4:I{Cgrn + Clor'.'n ]
(5-18)

+ [Clsinh (kx) +Czcosh (kx) ] !:C,?Jn(kr) +CBYn {kr) ]}

In order that equation (5-18) satisfy equation (5-8), we have

-g—? = -C500s(n6)+Cssin(n6)] {[(33x+c4]n[cgan_l—Cloa_n-l]

+|C

—

sinh (kx) + Czcosh (kx):| [C.?JI; {(ka)+ C8an. (ka) ]}

= -—ﬂi)yx+;z] sinf . (5-19)

10 = C8 = 0; the latter two constants must

It is apparent that C5 = C
vanish in order that %1? will be finite at r= 0. Also,

n=1 (5-20)
CeCyCy " ';_fv (5-21)
CeCyCy= v, (5-22)
Jl' (ka) = 0 _ (5-23)

We denote the roots of equation (5-23) by A,:

k=—= . (5-24)
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]

Ref (8) gives )Ll 1.84 ,

5.335 , (5-25)

e
i

8.535 , etc,

b
1

The general relation for the potential is now

$= sin 8 {r{—ﬁyx +Ez]

+ f Jl(hng) [Cnlsinh (An—’; )+ ancosh (ln%;-)]} (5-26)

n=1

We now apply the boundary condition at the tank

bottom, equation (5-7):

ox
[+ ]
N oA r A m LA - m
+Z =7 (A — C cosh—r-l(hi- )-C smh_f.l(h+ ) )
n:'1 a "1 n a [ nl a wpa?" n2 a ;;2’ ]
{5-27)
0
= N\ A r An m_\_ inh An m
2wyr Z_an"ll(kn'a) [Cncosh ?(h+__2.) ql sinh T(h+—2_)] .
n=1 1 Tpa 2 npa
(5~28)

We now use the orthogonality property of two eigen-
functions to find a relation between Cnl and Cn2. By noting certain

useful relations in ref(5) and ref(7), it is found that

a
s A 2 2
frJl(xig)Jl(Ajg)dr-_&lﬁ(i) (A2-1) 3700 . (5-29)
o]

where Gij is Kronecker's delta.
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It is also found that

a 3
2
fr Jl( r)dr-l—z J (M) (5-30)
0

When these results are applied to equation (5-28), it
follows that '

3
-[Llfa 2_
2B, 7 10w [3( 8 ) (21 o]
(5-31)
&n( _m ) - hn( m )]
[Cnlcosh y h+7rpaz anslnh._é. h+7;;;2 ,
or
C.,= C,, coth An(h-g- m ) 4225
= An 5)-
n2 - “ny a Tpa ln(hnz‘l)‘li(ln)smh @{h-r;rl_n;z)
p
(5-32)
The potential is now
E’- =Sin9{r(-b=:_ryvx+:z) (5-33)
o
X
Z (An % )[Cnlsmh o )+Cn1°°th‘(h"'ﬂpaz)COShanﬁ'}]

o
1
Rl

2

: 4a ﬁy cosh(A, =) ]}

AntAnZ -3} (Ag) sinh 3 (o 2

7rpa2

25



The final boundary condition, equation (5-9), specifies
conditions on the free surface. When equation (5-33) is substi-

tuted into equation (5-9) and rearranged the result is

s r(wyh+vz) 2a, fwy {5-34)
oo
Z Jl()tn.g) [Cnlcos A,m 3) 4a wycosh(ln-g-)]
i smh_n.{h-l-ﬂpa ma) AL 2-1)3(Ay)
2/ Jl(ln a) [Cn sin >an) 4a2wy sinh( Ang)] =0
t SmhArl h+_1m L n()-n‘? 1)31()‘11)

Tpa
or
r[ 28,0y -s*(w hty,)] = (5~35)

+

935 [ 2 i (3 )-s2c0m ()] |
An(An2-1)J1 (xy)

Again the orthogonal properties of the eigenfunctions
are used. The resulting equation for Crll is

3 - - =
A—i; J1 () [ 28, 0y-s2(@yhty,)] = {5-36)

2
21057200

sinh%l(hﬁ— %2)

t ln(iziiﬂl(hn)[at }En sinh (hn 'i}al')—- s2 Cosh(hn%]} )

CI.ll [ szcosh( Anrr; ) + a, = Angsin h(%)]

pa
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Hence,

' 2a
Cny =~ X - (5-37)
(An —l)Jl(?ln)[ 2COSh{wpa atTn Smh(n;la?’)]
{[ 2a ~-s2(5. h+vz)]smh ﬁ( ﬂ;r;2)

2a%. i
- T;Y[at_)_g_l sinh ( Rn%)— Sz(_‘.OSh( ln%”} .

The complete velocity potential is now found by substitution.

It is
d? = sin G{r(-(_—byx +5Z) (5-38)
- N 2aJ1( An ai)
+ —2—-315 cosh(hngi)
n2=/1 (Anz_l)Jl(An)Slnh—)’.a_n(h+W_;nT2)[ )\.n y a2
A m
cosh —§(X th ——9)
+ Tpa 2w —cosh A ) a sin =
S COSh(""“ 3)+ smh ?\nm) y[ ( ng h(kn \,]
7 pa ﬂ'pa
+ [Zatﬁy - sg(ﬁyh+'l—/'z)] sinh %{3( h+1f;2))J} .
i
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B. Forces and Moments

Inasmuch as the forces and moments exerted by the fluid
on the tank walls are found by integrating the pressure, an inspection
of equation (3-29) is in order. It is clear that the a X term causes no
sidewise difference in pressure, and hence no net force or moment.

Thus we are led to the working form of equation (3-29),

= -Ps:- (5-39)

o

Referring to Fig.l., it can be seen that the net force in

 the positive z direction is given by the integral,

-h 27

F, = pasinf dfdx , (5-40)

Th- m o
’a‘]'pa.2

the integration being taken over that part of the tank wall which is
immersed. Substituting equations (5-38) and (5-39) into equation
(5-40) gives

F = pas asinﬁ dé dx , (5 -41)
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or

-h_ —
Tpaz
Ez = npazs {{-5},}( -i-?z) (5-42)
- 2
_o &=
+2/ (xn2-1) sinh “n(h+ m, [ 2)3‘-5rcosh(>tn-§-)

= wpa

A

cosh n(x+h+£g]

3 (2:@[%.? cosh(ngd)- a, sinh(Axd)]

s2cos Anm) +a, smh(ln
ﬂ'pa

ﬂp&3

T s

+smh-i- h+ ——2}[ 2a wy Sz(wyh +7 ):]) -}

When the integration is finally carried out, the z compo-
nent of force is

'EZ = Wpazs{ ﬂ-p—nialz[ -17; i (h ‘1'7-711’:;2)] (5-43)
< 2
a An é_iﬂ
+Z ).n(ln "I)Sll’lhA (h+ Re sy )[ wysnlh(Zﬂ'p )COSh (h+27Tp8.2)

7pa
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?an

tanh(
paS =
. (=

25 cosh(nB)-a, sinh(ag)]

Sz+atéﬂtanh}£ J
a 3
Tpa
{5-43)
cont'd
g2 n _m
+[2 W, -8 (w h+vz)]smh-—(h+ma2))]}

In a similar fashion the moment is found to be

f f paxsing dfdx (5-44) o
TP pal

- ;Igzrdrde ,

gll

where the first integral represents the contribution of the tank wall
and the second that of the tank bottormn. Using equations (5-38) and
(5-39) as before gives the moment:

-h

ﬁy = 7pa’s (-@x+§z) (5-45)

m
wpa2

-h-
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o0

— 2 -
+Z a5, cosh (AE) . (5-45)
n=l (Plnz -1)sinh—);£(h+ Wpaz)[ rn cont'd,

cosh O(x+h+ _2)

+ LA (25 [Sz_a cosh{X -'g-)-a sinh(ln&):'
szcosh(._li‘.rgﬁa 2 sinh{~1 ?Lnn; s An n t
Tpa an Tpa

+ [2a wy S (myh-ﬂ) 1 smh (h-l- — )]} xdx

mpa
a
+ 7ps r{ﬁ h+_2)+f]
mpa
&)

el 2aJ)1 (A, L)
+Z ln [ = ycoshhn(h+_.._..)
(lﬂ -1)J; (Ap)sinh n(h+ 2) n mp al
Tpa
1

+ x 2 cosh{agil)- a smh(hnll-)
szcosh(hnm)+ smh(lnm)( y[ *n Ha ]

7pas Tpas

+ {2a wf—s (w h+v )] sinh >Lr1(h+ —@2)) ]} r2dr
Tp a

When the integrals in equation (5-45) are evaluated, it is found that

= 2
M. = 7pals } — [ (h2+h— +L(m ) {5-486)
7 { a? Ly Tpa (ﬂp az)
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2
= 1 m a - m =
+Tned 2] 2 (e Bo)e ] (5-46)
con -

= 2 ?th tanh(hnm H Zsech( knm 3 )-1
2(x 2-1)ai m .
n=1l )Ln (A-n I)S]l.l’lh'-%](h+7T 32) s2 +‘8. Antanh(
e Tp a3
( [23. '-'-’y s (uyh+v )] 51nh_.(h+7; )+2""y[ —cosh(?t,n—-

. A
-a,. sinh {\ k_l.) ) +4-~(.J ( o (ht+ — smh— h+ —
t naJ An Y\2 ( Wpazj a ‘ 'ﬂ'paz)

1 h . h An m
‘1‘3 COSh()Lnﬁ) - 21; sinh (A.nz) - cosh ?(h"" Wpaz J) ] }

In order to use equations (5-43) and (5 -.46) in missile dynamics
work, it is convenient to write the above results in terms of four

transfer functions:

= d 2 _ac

F,_ 5 m 2as4tanh( @_a3)

== Tpa©s 7]'_a.2+ 5

v P kn(}tn -l)[s +at tanh(—s)]

Z
(5-47)

Fz ) 5

= = 7pac°s “_2( 27rpaz) (5-48)
QC

2a
1 m
+ E)’ smh{ )cosh n(h+_ —.)
L A2 -Dsinh 3B (h+ 22 )L "0 2 pad 2 7pa? —
T pa
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A
tanh —=
3
* e élcosh(?\ hy Sz-a—l—ntanh (And)
2 A na ta a
s +a nta h 3)
npa
(5-48)
cont'd.
[23 -Szh]smhln(h+—_ ))]
'ﬂ'pa2
M 2 |
== npaZs {%‘ *‘h”'"lé,rﬁ‘z) (5-49)
Y
& 2,2[ Anh
+Z 2a4s [ tan h(wpa3) ZSECh{WPaS‘-’_l]}
2 X
| An2(>un -1)[s2 +at§r.1tanh(_:z;;n)}
M
Y - 2 -m 4,2
- = Tpa s{ﬁz(h +h7}ﬁ2 +_3(1rﬁ2’ ) (5-50)
wy P
[« o]
iz(h*"— 1+Z 20 [(—%t nh{2ntY) +zSech("nm )
4 2 200 2 1)sinh M(ny M
7pa” ) An"(Ay"-lsinh (h+ﬂ;;2) 52+atlntanh(hnn§)
Tpa

([23 -szh]mn]::t>L {h+ 1T—:;2)+2[sz;' cosh().n—) -a Slnh()l )])

2 (4 M ) ginp A0 m ,, 1 h
+4>ln(22(h+ 2) smh-a-(h+—~2)+2cosh(kn )
Anh

An m 4\
h {An h—{h+ — .
5g Sinh ) cos ( Wpa2)}‘l}
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